Commit cea7a934 authored by Michal Dovčiak's avatar Michal Dovčiak

Small corrections in documentation.

parent 121bdf73
......@@ -177,16 +177,16 @@ source code. Summary of the parameters:
* **par2 ... theta_o**
- observer inclination in degrees (0°-pole, 90°-disc)
* **par3 ... rin**
- inner edge of non-zero disc emissivity (in GM/c^2 or in r~mso~)
- inner edge of non-zero disc emissivity (in GM/c^2 or in r<sub>mso</sub>)
* **par4 ... ms**
- switch for inner edge
- 0: we integrate from inner edge = par3
- 1: if the inner edge of the disc is below marginally stable orbit (MSO)
then we integrate emission above MSO only
- 2: we integrate from inner edge given in units of MSO, i.e. inner
edge = par3 &times; r~mso~ (the same applies for outer edge)
edge = par3 &times; r<sub>mso</sub> (the same applies for outer edge)
* **par5 ... rout**
- outer edge of non-zero disc emissivity (in GM/c^2 or in r~mso~)
- outer edge of non-zero disc emissivity (in GM/c^2 or in r<sub>mso</sub>)
* **par6 ... phi**
- lower azimuth of non-zero disc emissivity (degrees)
* **par7 ... dphi**
......@@ -199,17 +199,17 @@ source code. Summary of the parameters:
source is located (GM/c^(2))
* **par10 ... PhoIndex**
- power-law energy index of the primary flux
* **par11 ... L/L~Edd~**
* **par11 ... L/L<sub>Edd</sub>**
- dE/dt, the intrinsic local (if negative) or the observed
(if positive) primary isotropic flux in the X-ray energy range 2-10keV
in units of L~Edd~
in units of L<sub>Edd</sub>
* **par12 ... Np:Nr**
- ratio of the primary to the reflected normalization
- 1: self-consistent model for isotropic primary source
- 0: only reflection, primary source is hidden
- if positive then L/L~Edd~ (par11) means the luminosity towards the
- if positive then L/L<sub>Edd</sub> (par11) means the luminosity towards the
observer
- if negative then L/L~Edd~ (par11) means the luminosity towards the disc
- if negative then L/L<sub>Edd</sub> (par11) means the luminosity towards the disc
* **par13 ... density/ionisation**
- density profile normalization in 10^15 cm^(-3) if positive
- ionisation profile normalisation if it is negative
......@@ -230,7 +230,7 @@ source code. Summary of the parameters:
- abs(par16) > 1: the fraction of thermalisation is computed from
difference between the incident and reflected fluxes
* **par17 ... arate**
- accretion rate in units of L~Edd~ if positive or in Solar mass per
- accretion rate in units of L<sub>Edd</sub> if positive or in Solar mass per
Julian year (365.25 days) if negative
* **par18 ... f_col**
- spectral hardening factor
......@@ -330,8 +330,8 @@ source code. Summary of the parameters:
Af&times;f^(qf), used for par38=+16 and par38=+18;
if par36=-1 then the following hard lags prescription is used (see
Epitropakis & Papadakis, 2017):
100 * log10(E~ref~/E) * (f/1e-4)^(-1) s
with E~ref~ being middle of the reference energy band and E middle of
100 * log10(E<sub>ref</sub>/E) * (f/1e-4)^(-1) s
with E<sub>ref</sub> being middle of the reference energy band and E middle of
the energy band of interest
* **par37 ... Amp/qf**
- multiplicative factor for the amplitude-energy dependence in case of
......@@ -527,16 +527,16 @@ source code. Summary of the parameters:
* **par2 ... theta_o**
- observer inclination in degrees (0&deg;-pole, 90&deg;-disc)
* **par3 ... rin**
- inner edge of non-zero disc emissivity (in GM/c^2 or in r~mso~)
- inner edge of non-zero disc emissivity (in GM/c^2 or in r<sub>mso</sub>)
* **par4 ... ms**
- switch for inner edge
- 0: we integrate from inner edge = par3
- 1: if the inner edge of the disc is below marginally stable orbit (MSO)
then we integrate emission above MSO only
- 2: we integrate from inner edge given in units of MSO, i.e. inner
edge = par3 &times; r~mso~ (the same applies for outer edge)
edge = par3 &times; r<sub>mso</sub> (the same applies for outer edge)
* **par5 ... rout**
- outer edge of non-zero disc emissivity (in GM/c^2 or in r~mso~)
- outer edge of non-zero disc emissivity (in GM/c^2 or in r<sub>mso</sub>)
* **par6 ... phi**
- lower azimuth of non-zero disc emissivity (degrees)
* **par7 ... dphi**
......@@ -549,17 +549,17 @@ source code. Summary of the parameters:
source is located (GM/c^(2))
* **par10 ... PhoIndex**
- power-law energy index of the primary flux
* **par11 ... L/L~Edd~**
* **par11 ... L/L<sub>Edd</sub>**
- dE/dt, the intrinsic local (if negative) or the observed
(if positive) primary isotropic flux in the X-ray energy range 2-10keV
in units of L~Edd~
in units of L<sub>Edd</sub>
* **par12 ... Np:Nr**
- ratio of the primary to the reflected normalization
- 1: self-consistent model for isotropic primary source
- 0: only reflection, primary source is hidden
- if positive then L/L~Edd~ (par11) means the luminosity towards the
- if positive then L/L<sub>Edd</sub> (par11) means the luminosity towards the
observer
- if negative then L/L~Edd~ (par11) means the luminosity towards the disc
- if negative then L/L<sub>Edd</sub> (par11) means the luminosity towards the disc
* **par13 ... density/ionisation**
- density profile normalization in 10^15 cm^(-3) if positive,
i.e. n = par13 &times; r^(par14)
......@@ -588,7 +588,7 @@ source code. Summary of the parameters:
- abs(par17) > 1: the fraction of thermalisation is computed from
difference between the incident and reflected fluxes
* **par18 ... arate**
- accretion rate in units of L~Edd~ if positive or in Solar mass per
- accretion rate in units of L<sub>Edd</sub> if positive or in Solar mass per
Julian year (365.25 days) if negative
* **par19 ... f_col**
- spectral hardening factor
......@@ -695,8 +695,8 @@ source code. Summary of the parameters:
Af&times;f^(qf), used for par38=+16 and par38=+18;
if par36=-1 then the following hard lags prescription is used (see
Epitropakis & Papadakis, 2017):
100 * log10(E~ref~/E) * (f/1e-4)^(-1) s
with E~ref~ being middle of the reference energy band and E middle of
100 * log10(E<sub>ref</sub>/E) * (f/1e-4)^(-1) s
with E<sub>ref</sub> being middle of the reference energy band and E middle of
the energy band of interest
* **par37 ... Amp/qf**
- multiplicative factor for the amplitude-energy dependence in case of
......
......@@ -26,7 +26,7 @@ $tab 2.
$sw 1.
ntable " " 80. 0. 0. 99. 99. -1.
nrad " " -4488. -10000. -10000. 10000. 10000. -100.
division " " -1. 0. 0. 1. 1. -1.
division " " -1. -1. -1. 1. 1. -1.
nphi " " 180. 1. 1. 20000. 20000. -100.
deltaT GM/c^3 1. 1e-3 1e-3 10. 10. -0.05
nt_ratio " " 1. 1. 1. 10. 10. -1.
......@@ -67,7 +67,7 @@ limb " " 0. 0. 0. 2. 2. -1.
$tab 11.
ntable " " 80. 0. 0. 99. 99. -1.
nrad " " -4488. -10000. -10000. 10000. 10000. -100.
division " " -1. 0. 0. 1. 1. -1.
division " " -1. -1. -1. 1. 1. -1.
nphi " " 180. 1. 1. 20000. 20000. -100.
deltaT GM/c^3 1. 1e-3 1e-3 10. 10. -0.05
nt_ratio " " 1. 1. 1. 10. 10. -1.
......
......@@ -457,8 +457,8 @@ param[ 8] = 3.; // height
param[ 9] = 2.; // PhoIndex
param[10] = 0.001; // L/Ledd
param[11] = 1.; // Np:Nr
param[12] = 1.; // density
param[13] = 0.; // den_prof
param[12] = 1.; // density/ionisation
param[13] = 0.; // den_prof/ion_prof
param[14] = 1.; // abun
param[15] = 0.; // thermalisation
param[16] = 0.1; // arate
......@@ -2060,8 +2060,8 @@ for(ie=0;ie<ne;ie++){
spectrum[ie]=0.;
for(it=0;it<nt;it++) spectrum[ie] += far[ie+ne*it];
// we have to divide by duration of the flare, flare_duration_rg, however,
// we did not multiply by deltaT, thus we have to divide by
// flare_duration_rg / (deltaT)
// we did not multiply by deltaT (i.e. far is per second), thus we have to
// divide by flare_duration_rg / (deltaT)
spectrum[ie] *= dt / flare_duration_rg;
if(NpNr != 0.)spectrum_prim[ie] = far_prim[ie];
}
......@@ -2268,6 +2268,7 @@ if(photar_sw){
// photar[ie] /= flare_duration_rg; <-- we have already divided by flare duration!
}
}else if(time1 >= time2){
// we compute flux per second at time time1
// given time1, find the corresponding index in time[]:
it0 = (int) ceil( (time1 - time[0]) / deltaT + 1 );
if(it0 < 1) it0 = 1;
......@@ -2310,7 +2311,10 @@ if(photar_sw){
// all the whole bins
for(it=it0+1;it<itn;it++) photar[ie] += (far[ie+ne*it]+far[ie+ne*(it-1)])/2.;
photar[ie] *= dt / flare_duration_rg;
if(NpNr != 0.)photar[ie] += far_prim[ie];
if(NpNr != 0. && time1_rg <= flare_duration_rg ){
if(time2_rg < flare_duration_rg)photar[ie] += far_prim[ie] * (time2-time1);
else photar[ie] += far_prim[ie] * (flare_duration_sec-time1);
}
}
}
}
......
......@@ -475,8 +475,8 @@ param[ 8] = 3.; // height
param[ 9] = 2.; // PhoIndex
param[10] = 0.001; // L/Ledd
param[11] = 1.; // Np:Nr
param[12] = 1.; // density
param[13] = 0.; // den_prof
param[12] = 1.; // density/ionisation
param[13] = 0.; // den_prof/ion_prof/density
param[14] = 1.; // abun
param[15] = 300.; // E_cut
param[16] = 0.; // thermalisation
......@@ -3064,8 +3064,8 @@ for(ie=0;ie<ne;ie++){
spectrum[ie]=0.;
for(it=0;it<nt;it++) spectrum[ie] += far[ie+ne*it];
// we have to divide by duration of the flare, flare_duration_rg, however,
// we did not multiply by deltaT, thus we have to divide by
// flare_duration_rg / (deltaT)
// we did not multiply by deltaT (i.e. far is per second), thus we have to
// divide by flare_duration_rg / (deltaT)
spectrum[ie] *= dt / flare_duration_rg;
if(NpNr != 0.)spectrum_prim[ie] = far_prim[ie];
}
......@@ -3272,6 +3272,7 @@ if(photar_sw){
// photar[ie] /= flare_duration_rg; <-- we have already divided by flare duration!
}
}else if(time1 >= time2){
// we compute flux per second at time time1
// given time1, find the corresponding index in time[]:
it0 = (int) ceil( (time1 - time[0]) / deltaT + 1 );
if(it0 < 1) it0 = 1;
......@@ -3314,7 +3315,10 @@ if(photar_sw){
// all the whole bins
for(it=it0+1;it<itn;it++) photar[ie] += (far[ie+ne*it]+far[ie+ne*(it-1)])/2.;
photar[ie] *= dt / flare_duration_rg;
if(NpNr != 0.)photar[ie] += far_prim[ie];
if(NpNr != 0. && time1_rg <= flare_duration_rg ){
if(time2_rg < flare_duration_rg)photar[ie] += far_prim[ie] * (time2-time1);
else photar[ie] += far_prim[ie] * (flare_duration_sec-time1);
}
}
}
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment